杨科 1,*薛媛元 1贾波 2白宣庆 1[ ... ]陈娟 1
作者单位
摘要
1 西安应用光学研究所,陕西 西安 710065
2 陆装西安军代局驻西安地区第八军代室,陕西 西安 710065
损伤阈值测量装置是强激光技术的重要技术指标,主要用于强激光光学元件的研制和测试,而同步触发模块作为模块之间时序的控制器,是研制损伤阈值测量装置的关键技术之一。介绍了一种用于激光损伤阈值测量装置的同步触发模块及方法。设计了基于现场可编程门阵列(field programmable gate array,FPGA)为主控芯片的硬件方案,通过上位机操控软件设置同步触发参数,来控制各路输出同步信号的宽度和各路信号之间的时序,可极大提高同步触发的精度和效率。通过实验验证,同步脉冲信号之间的调节精度为2 ns,同步脉冲信号的最小宽度为10 ns,满足激光损伤阈值测量装置的要求。
损伤阈值 同步触发 FPGA damage threshold synchronous trigger field programmable gate array 
应用光学
2023, 44(6): 1228
作者单位
摘要
1 西安石油大学陕西省油气井测控技术重点实验室,陕西西安 710065
2 西安微电子技术研究所,陕西西安 710054
Cuk变换器具有输入与输出电流纹波低、能量双向流动等优点,在新能源发电和直流微网中具有良好的应用前景。在分析变换器工作原理的基础上,分别建立导通和截止状态的开关流图; 引入以乘法器描述的开关支路模型,推导变换器在整个开关周期的开关流图; 对开关支路施加扰动,提取变换器的小信号模型,并应用梅森公式计算变换器的传递函数。采用 PSIM软件对变换器小信号模型进行仿真,结果证明了模型的正确性,本文方法对高阶开关变换器建模具有较高的参考价值。
开关流图法 Cuk变换器 小信号模型 仿真验证 switching flow graph method Cuk converter small signal model simulation and verification 
太赫兹科学与电子信息学报
2023, 21(5): 689
作者单位
摘要
1 厦门理工学院 光电与通信工程学院, 福建 厦门 361024
2 北京大学 电子学院, 北京 100871
随着摩尔定律逼近极限,碳纳米管场效应晶体管(CNTFET)被认为是5 nm以下CMOS晶体管的有力替代者。CNTFET具有准一维结构,栅极可有效控制导电沟道的导通/关断;同时,载流子在沟道内可实现近弹道输运,具有极高的迁移率。因此,CNTFET在低电压环境下,可提供较大的电流传输能力,为实现纳米级超大规模模拟/逻辑电路提供了解决方案。文章综述了CNTFET紧凑模型的发展现状,分析了现阶段面临的漏极电流精确模型、隧穿效应、寄生效应、多纳米管模型等存在的问题,重点探讨了针对这些问题的解决方案。最后对该紧凑模型未来的应用前景进行了讨论。
碳纳米管 漏极电流 隧穿效应 寄生效应 紧凑模型 CNTFET drain current tunneling effect parasitic effect compact model 
微电子学
2023, 53(2): 286
作者单位
摘要
西安应用光学研究所,陕西 西安 710065
设计并搭建了一套1 064 nm、532 nm的双波长光学元件激光损伤阈值自动测量装置,用于光学元件膜层激光损伤阈值的自动化检测。装置主要由脉冲激光光源、光束参数诊断组件、损伤在线诊断组件、待测件扫描运动平台和控制系统组成。整个测量装置和测量过程由基于Labview编制的计算机综合测量软件自动控制,可实现损伤阈值在0.1 J/cm2~100 J/cm2能量密度范围内的自动测量,并利用该装置对1 064 nm增透膜和铝反射膜样品进行了测量,得到损伤阈值分别为27.09 J/cm2和3.21 J/cm2,相对不确定度分别为3.91%和5.61%。
自动测量 激光损伤阈值 1-on-1 能量密度 相对测量不确定度 automatic measurement LIDT 1-on-1 energy density relative measurement uncertainty 
应用光学
2023, 44(4): 852
作者单位
摘要
1 西安应用光学研究所 国防科技工业光学一级计量站,陕西 西安 710065
2 西安导引科技有限责任公司 工艺部,陕西 西安 710065
作为红外标准光源,要求30 ℃~420 ℃黑体能快速升温到设定温度点,并保持温度稳定。针对其升降温功率差别大、滞后大等特点,用开关控制冲击响应自整定方法,得到黑体温升超调量、最大升降温速率等参数,采用复合智能温控策略,实现了30 ℃~420 ℃黑体温升前期快,接近设置温度时改以渐进方式达到并稳定在设定温度点。实验结果表明,实现了30 ℃~420 ℃黑体无超调地到达设定温度点,且稳定性为±0.03 ℃/min,该指标达到了国际同类产品水平。
温度控制 黑体 PID控制 大滞后系统 开关控制 自整定 阶跃响应 temperature control blackbody PID control large delay system bang-bang control self-tuning step response 
应用光学
2023, 44(2): 392
刘志成 1,2王晰晨 1,2贺超 1,2姚建楠 1,2[ ... ]钟年丙 1,*
作者单位
摘要
1 重庆理工大学光纤传感与光电检测重庆市重点实验室,智能光纤感知技术重庆市高校工程研究中心,重庆 400054
2 重庆理工大学两江国际学院,重庆 401135
为了定量检测气液两相流中气泡尺寸(气泡截面直径)、气泡频率、气泡上升速率,提出一种光纤光谱气泡特征参数定量检测方法。首先,采用近红外光纤光谱仪、平凸透镜、多模石英光纤、高速摄像机、气液两相流管道、注射泵等构建了气泡特征参数光学检测系统。然后,建立了光纤光谱定量检测气液两相流中气泡尺寸、频率、速率的理论模型,采用Zemax软件仿真分析了光学测量系统的光路传输路径。最后,实验研究了光学测量系统对气泡特征参数定量检测的性能。研究表明,所提出的气液两相流中气泡特征参数检测方法可同时定量检测气泡尺寸、频率和速率,对气泡尺寸、频率、速率检测的最大相对误差分别为9.8%、8.1%和8.7%。
光谱学 气液两相流 气泡尺寸 气泡频率 气泡速率 光纤光谱 定量检测 
光学学报
2022, 42(20): 2030002
作者单位
摘要
光亮度是表征发光体的重要光度特性参数。提出了一种超低亮度计的设计方法,描述了超低亮度计的工作原理和组成;利用微弱光信号处理技术、非线性校准技术、制冷散热技术等实现了超低亮度的自动测量;根据亮度计的测量原理,对仪器进行了标定,测量不确定度达到5%。超低亮度计可适用于实验室和现场等测试场所,为微光夜视装备、显示系统、特种光源、发光材料等的性能评估测试和校准提供计量保障。
应用光学
2022, 43(4): 701
作者单位
摘要
2西安北方光电科技防务有限公司,陕西 西安 710043
红外辐射计用于红外热像仪测试设备的校准。介绍了一种用于红外辐射计的测量模块及方法。设计了采样保持的测量方案,通过参考信号生成采样脉冲,并将采样点设置在每个信号周期的1/4相位处,能显著提高微弱信号的测量能力。对于35 ℃的黑体辐射信号,通过与现有方案的对比实验,测量信号强度可提高57.6%;在红外热像仪测试设备背景温度为22 ℃条件下,通过与现有仪器的对比测试,测量信号精度可提升50%以上。
应用光学
2022, 43(4): 738
作者单位
摘要
1西安应用光学研究所,陕西 西安 710065
大功率激光功率测量常用量热法,但溯源复杂。介绍了具有较高测量精度的基于光压原理的大功率激光功率测量方法,设计了利用1/105精度天平大功率激光测量实验,测试了基于GaAs半导体材料制作的反射镜的反射率及损伤阈值,确定了基于GaAs半导体材料反射镜的相关性能。得到了普通实验室条件下的功率测量重复性及线性,验证了1/105精度天平用于大功率激光测量的可行性。通过实验结果结合理论计算,得出利用1/105精度天平的光压测量功率的测量上限可以达到3×104 W以上。
应用光学
2022, 43(4): 798
刘家辰 1,2黄永箴 1,2,*郝友增 1,2杨珂 1,2[ ... ]肖金龙 1,2
作者单位
摘要
1 中国科学院半导体研究所 集成光电子学国家重点实验室,北京 100083
2 中国科学院大学 材料科学与光电工程中心,北京 100049
通过建立包含朗之万噪声源的三模速率方程模型,模拟研究了回音壁模式微腔激光器的噪声特性和线宽特性,特别是注入电流热效应引起的跳模及其对光功率和实现窄线宽的影响。回音壁微腔激光器单模工作时,在大偏置电流下可由低频处的频率噪声得到百kHz以下的激光器线宽;在微腔双模激射状态下,由于模式竞争作用,微腔激光器的相对强度噪声和频率噪声在低频处都有明显的升高,使得激光器的线宽展宽。此外,还采用快速傅里叶变换的方法由时域信号计算获得激光模式光谱线型,由此得到的激光模式线宽与通过频率噪声谱获得的线宽基本一致。
半导体微腔激光器 相对强度噪声 相位噪声 频率噪声 线宽 Semiconductor microcavity lasers Relative intensity noise Phase noise Frequency noise Linewidth 
光子学报
2022, 51(2): 0251205

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!